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Abstract

Estimation of canopy biophysical variables from remote sensing data was investigated using radiative transfer model inversion.

Measurement and model uncertainties make the inverse problem ill posed, inducing difficulties and inaccuracies in the search for the solution.

This study focuses on the use of prior information to reduce the uncertainties associated to the estimation of canopy biophysical variables in the

radiative transfer model inversion process. For this purpose, lookup table (LUT), quasi-Newton algorithm (QNT), and neural network (NNT)

inversion techniques were adapted to account for prior information. Results were evaluated over simulated reflectance data sets that allow a

detailed analysis of the effect of measurement and model uncertainties. Results demonstrate that the use of prior information significantly

improves canopy biophysical variables estimation. LUT and QNT are sensitive to model uncertainties. Conversely, NNT techniques are

generally less accurate. However, in our conditions, its accuracy is little dependent significantly on modeling or measurement error. We also

observed that bias in the reflectance measurements due to miscalibration did not impact very much the accuracy of biophysical estimation.

D 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Remote sensing data are used to infer canopy biophysical

variables, such as leaf area index (LAI), chlorophyll content

(Cab), daily fraction of photosynthetically active radiation

(fAPAR) absorbed by the vegetation, and the cover fraction

(fCover), which are involved in important physical and/or

physiological processes. Radiative transfer models describ-

ing the relationship between canopy characteristics and

reflectance are more and more used in the inverse mode

to estimate those canopy biophysical variables from remote

sensing data (Goel & Strebel, 1983; Jacquemoud & Baret,

1993; Kuusk, 1991b).

Radiative transfer model inversion consists in adjusting

the values of input canopy biophysical variables V={V1,

. . ., Vnvar
}, such as the bidirectional reflectance factors

(BRFs) simulated with the radiative transfer model M

matches the best the BRFs R measured by the sensor in a

range of directions and wavebands. The model M requires a

set of nvar input variables and the corresponding measure-

ment configuration C (the sun illumination direction, the

observation angles, and wavelengths). The model M

matches the measured BRFs R with an error e:

R ¼ MðV;CÞ þ e ð1Þ

The uncertainty e in Eq. (1) accounts for both measure-

ment and model uncertainties. It represents the adequacy

between the model and the measurements. The measurement

uncertainties come from the noise associated with the sensor

and the data processing required to transform the sensor raw

output signal into BRFs (signal digitizing, radiometric

calibration, atmospheric corrections, georeferencing, etc.).

Uncertainties are partly coming from inaccuracies associ-

ated to the measurement configuration variables such as

directions and wavebands. The model uncertainties come
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from the assumptions on canopy architecture, which may

not be consistent with that of the actual canopy. Further, the

computation of the radiative transfer requires generally

some approximations yielding in additional uncertainties

in model simulations. At that time, very little work is

published about the role of measurement and model uncer-

tainties on the accuracy of canopy biophysical estimates.

Eq. (1) defines the ‘‘direct problem.’’ Conceptually, the

resolution of the inverse problem consists in finding an

estimate V̂of the variables V from the measured radiation R.

The most popular algorithms to solve the inverse prob-

lem are the minimization algorithms, the lookup tables

(LUT), and the neural networks (NNT). The feasibility of

inverting radiative transfer models have been shown in

many studies (Goel & Strebel, 1983; Jacquemoud & Baret,

1993; Kuusk, 1991b). Some investigations have been done

to check the suitability of these algorithms to retrieve

canopy variables (Knyazikhin et al., 1998, Knyazikhin,

Martonchik, Myneni, Dinner, & Running, 1998; Privette

et al., 1996; Weiss & Baret, 1999).

The inverse problem can be solved properly only if it is

well posed, in the sense defined by Hadamard: a problem is

well posed if and only if its solution exists, is unique, and

depends continuously on the data (Garabedian, 1964). The

problem is ill posed if at least one of these statements does

not hold.

The inverse problem is by nature an ill-posed problem

mainly for two reasons. Firstly, the solution of the inverse

problem is not necessarily unique, but a set of solutions

could lead to similar match between the measured and the

simulated reflectance values (Eq. (1)). Secondly, the meas-

urement and model uncertainties may induce large variation

in the solution V̂ of the inverse problem. The error term e
(Eq. (1)) takes into account these uncertainties. Therefore,

regularization techniques are necessary to obtain stable and

reliable solution of the ill-posed inverse problem associated

to Eq. (1).

The use of prior information is recognized as a very

efficient way to solve ill-posed problems. For remote sens-

ing applications, three different sources of prior information

may be considered.

The first category of prior information corresponds to

ancillary data measured on site or products provided by

another sensor, e.g. leaf water content (Cw) estimated with

radar or subpixel heterogeneity described with a high-

resolution image. It could be also extended to the quantifi-

cation of radiance measurement uncertainties as well as their

associated structure.

The second category of prior information corresponds to

the knowledge of the type of canopy architecture that

defines the class of radiative transfer model to be used

(turbid medium, geometric, or hybrid).

The last category of prior information concerns the

knowledge of typical distribution of canopy biophysical

variables used as input in radiative transfer models. This

information strongly depends on the canopy type and its

development stage. This prior information may be provided

by an expert or by the compilation of experimental data. We

should note that in the case of high spatial resolution remote

sensing applications, knowledge of the canopy type and

associated species is generally possible. This helps consid-

erably in refining the prior information on canopy biophys-

ical variables typical distribution.

In this paper, the principle of including prior information

to solve the inverse problem is presented. Its implementa-

tion is particular to each inversion algorithm.

Three algorithms to solve the inverse problem are con-

sidered. Two of these algorithms, the LUT and the quasi-

Newton algorithm (QNT), search for the set of canopy

variables values leading to the closest match between model

simulations and radiance measurements. The third algorithm

is based on the training of a NNT on radiative transfer model

simulations. Conversely to the previous methods, it concen-

trates on the biophysical variable space rather than on the

radiance space. Each algorithm is presented together with

the way prior information is introduced. The effect of

accounting for prior information when solving the inverse

problem is then evaluated.

The effect of measurement and model uncertainties on

the accuracy of the solution was also investigated. When

retrieving model variables from a set of ‘‘actual’’ measure-

ments, the modeling error is very difficult to dissociate from

the measurement error. To evaluate the role played by each

error terms, synthetic data sets with controlled measurement

and modeling errors levels have been generated.

The canopy variables to be retrieved were the LAI and

leaf Cab. These are primary variables, i.e. the radiative

transfer model input variables. In addition, we considered

the canopy chlorophyll content (LAI.Cab), the fAPAR, and

the fCover. These are secondary variables that are derived

from combination of primary variables. For sake of sim-

plicity, the study is restricted to the top of canopy BRFs,

assuming perfect atmospheric corrections.

2. Materials and methods

Four data sets have been simulated to cover a range of

radiative transfer model and measurements uncertainties.

We will first describe the models used and then the way we

generated measurements uncertainties.

2.1. Radiative transfer models

Two radiative transfer models with very different canopy

architecture representation and radiative transfer computa-

tion were considered: a turbid medium model (SAIL) and a

ray tracing (PARCINOPY) model applied on a 3D descrip-

tion of canopy structure.

The SAIL model (Verhoef, 1984, 1985) is a 1D turbid

medium radiative transfer model. The hot spot feature

description was implemented according to Kuusk (Andrieu,
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Baret, Jacquemoud, Malthus, & Steven, 1997; Kuusk,

1991a). Three variables are used to describe canopy struc-

ture: the LAI, the average leaf angle (hl) of an ellipsoidal

leaf angle distribution function (Campbell, 1986), and a hot

spot parameter (h).

PARCINOPY (Chelle, 1997) is a 3D radiative transfer

model that uses a Monte Carlo ray tracing method to

compute the BRDF of the vegetation. PARCINOPY

requires the canopy architecture to be represented with an

ensemble of triangles. In this study, the position of the

triangles was determined according to España, Baret,

Chelle, Aries, and Andrieu (1998) maize dynamic canopy

architecture model. It requires the following input variables:

maximum number of leaf, maximum LAI value, maximum

canopy height, plant stage, and plant density. Three million

rays are thrown to compute the BRFs of a given scene. That

results in a relative accuracy on reflectance of 2.5% due to

the Monte Carlo process (España et al., 1998).

For both SAIL and PARCINOPY models, the soil is

characterized by a typical Lambertian soil reflectance spec-

tra multiplied by a brightness parameter S. This allows to

realistically represent the influence on reflectance of rough-

ness and moisture variation. The typical soil spectra used

corresponds to the average value between actual measure-

ment of wet and dry soil reflectance spectra.

The PROSPECT model (Fourty, Baret, Jacquemoud,

Schmuck, & Verdebout, 1996; Jacquemoud & Baret,

1990) is used to describe the leaf reflectance and trans-

mittance that are required by SAIL and PARCINOPY. The

input variables of PROSPECT are the structure variable N,

the leaf Cab, the leaf Cw, and the dry matter content (Cdm).

The Cdm was related to the leaf Cw, assuming a constant

relative Cw of 80%.

2.2. The synthetic data sets

Top of canopy level reflectance observed from nadir was

considered in this study. The sun zenith angle was set to

45j, and no diffuse radiation was considered. The bidirec-

tional reflectance was computed in nine wavelengths (500,

562, 630, 692, 710, 740, 795, 845, and 882 nm).

Six different development stages of a maize canopy have

been considered, thanks to España model. Table 1 gives the

LAI, the number of leaves per plant, the fCover, and the

canopy height for the six development stages. The corre-

sponding SAIL canopy structure variables were derived

directly from this 3D architecture model. The LAI accounts

for stems that were represented by half their total developed

area (Lang & McMurtrie, 1992). The average leaf angle

computed from the 3D structure was found equal to hl=56j.
The hot spot parameter has been adjusted by means of the

bidirectional gap fraction (Baghdadi & Baret, 1997) and

found equal to h=0.1. Eighteen experiments corresponding

to combinations of the six development stages, three differ-

ent levels of the leaf Cab and two soil status (wet and dry),

were considered.

The SAIL model was always used in the inversion

process. It requires seven input variables to describe canopy,

leaf, and soil characteristics: the LAI, the average leaf angle

(hl), the hot spot parameter (h), the Cab, the leaf Cw, the leaf

structure parameter (N), and the soil brightness parameter

(S).

To test the sensitivity of the inversion algorithms to the

adequacy between simulations and measurements, four test

data sets have been generated (Table 2).

Two of them were simulated with SAIL and therefore

correspond to no model uncertainty. The 1Dbs data set was

derived from direct SAIL reflectance simulations with

addition of a 2.5% noise (normal distribution, mean value

equal to 0). To account also for the problem of possible

sensor calibration errors, a relative bias of 2% was finally

added to the set 1Dbs to produce the 1Dbb data set. The 1D

data sets 1Dbs and 1Dbb account only for measurement

uncertainty (noise or noise and bias).

The two other test data sets were generated with the 3D

model. They allow to evaluate the consequence of inverting

a model against a data set that is not consistent with this

model. The modeling error, estimated by comparing 1Dbs

with 3Dbs, can reach up to 23% (relative standard deviation)

in the near infrared domain. This high error level is reached

mainly because the maize architecture is not consistent with

the SAIL turbid medium assumption. Finally, two sets

generated with PARCINOPY were considered. 3Dbs has a

Table 1

Main characteristics of the canopy simulated

Experiment

number

Leaves/

plant

fCover Canopy

height (m)

LAI Cab S

1 2 0.07 0.09 0.25 30 1.4

2 8 0.36 0.41 1.64 30 1.4

3 17 0.60 1.80 3.01 30 1.4

4 19 0.85 2.20 6.25 30 1.4

5 2 0.07 0.09 0.25 50 1.4

6 5 0.20 0.20 0.86 50 1.4

7 8 0.36 0.41 1.64 50 1.4

8 17 0.48 0.82 2.34 50 1.4

9 17 0.60 1.80 3.01 50 1.4

10 5 0.85 2.20 6.25 50 1.4

11 2 0.07 0.09 0.25 70 1.4

12 8 0.36 0.41 1.64 70 1.4

13 17 0.60 1.80 3.01 70 1.4

14 5 0.85 2.20 6.25 70 1.4

15 2 0.07 0.09 0.25 50 0.6

16 8 0.36 0.41 1.64 50 0.6

17 17 0.60 1.80 3.01 50 0.6

18 5 0.85 2.20 6.25 50 0.6

The LAI includes leaves and stems. Leaf Cab for the 18 scenes of the

synthetic data sets. Indices 1–18 are the experiments numbers used for the

x-axis in (Figs. 2, 4, 6, and 7).

Table 2

Characteristics of the four databases

1Dbs 1Dbb 3Dbs 3Dbb

Noise

effect

Noise+bias

effects

Noise+model

effects

Noise+bias+

model effects
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relative noise of 2.5% resulting from the Monte Carlo

process. It therefore corresponds to that of the 1Dbs data

set. Then, similarly to 1Dbb, a bias of 2% has been added to

3Dbs to derive the 3Dbb data set.

2.3. Algorithms to solve the inverse problem

Three algorithms were considered to solve the inverse

problem: a LUT, a QNT, and a NNT.

2.3.1. Lookup table

The most simple method to solve Eq. (1) consists in

computing and storing the graph of the function M(V,C).

The configuration C represents the conditions of observa-

tions, i.e. wavelengths, view, and illumination geometry.

To sample the variables V={V1, . . ., Vnvar
}, 280000

values of each variable Vi were randomly drawn with a

distribution function specific to each variable. The space of

model input variables was sampled by randomly drawing

values within particular distribution functions. According to

Weiss, Baret, Myneni, Pragnère, and Knyazikhin (2000),

280000 cases were considered. The distribution function

for each variable was defined in order to better sample

domains where the reflectance is more sensitive to the

considered variable. This was achieved in a previous step

by numerical experiments. Table 3 presents the distributions

selected. The reflectance was computed with SAIL. In this

case, no noise and bias were added. Besides the canopy

reflectance, the secondary variables considered (LAI.Cab,

fAPAR, and fCover) have been computed for each of the

280000 cases.

To select the solution of the inverse problem, the LUT is

sorted according to a cost function, which is a simple root

mean square error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nmeas

Xnmeas

i¼1

ðRi � Ri;LUTÞ2
s

ð2Þ

where Ri is the BRF measured for the wavelength i and

Ri,LUT is the BRF simulated by SAIL and stored in LUT

(Eq. (2)). The solution is considered as being the distribu-

tion of the set of variables providing the smallest RMSE

and can be simply represented by its median value. How-

ever, for some variables (hl, h, and N), the distribution of

the best solution is so large (Fig. 1a) that it could take any

value in the range of variation of the variable (Fig. 1a).

Consequently, in these conditions, the median value will

represent the center of the range instead of the high-

frequency values. To prevent widely spread solutions and

impose already constraints by accounting for prior informa-

tion, the LUT entries have been selected according to the

criterion:

hl ¼ 60jF5j

h ¼ 0:15F0:1

N ¼ 1:5F0:2

8>>>><
>>>>:

ð3Þ

This process is a simple way to input prior information in

the inverse problem. The values retained in Eq. (3) have

been chosen slightly different from the actual values to

simulate the uncertainty associated to prior information.

Following Criterion (3), the LUT reduces down to 8032

entries. For this reduced LUT, the median of the 10 best

combinations was considered as the solution of the inverse

problem. Fig. 1b shows that these constraints improved

significantly the accuracy of all the variable of interest.

2.3.2. Quasi-Newton algorithm

One classical way for solving the inverse problem con-

sists in searching for the maximum likelihood of the

probability density function r of the canopy variables

(Tarantola, 1987):

rV~exp½ðR � RsimÞTW�1ðR � RsimÞ
þ ðV � VpriorÞTC�1ðV � VpriorÞ� ð4Þ

where R is the vector of the measured BRFs, Rsim are the

corresponding simulated BRFs, and W is the covariance

matrix of the measurements. The diagonal elements of W

are the variance e2. The Vprior variables values are estimated

prior to the retrieval. They correspond to the most probable

variable values. The matrix C is the covariance matrix of the

Vprior variable values.

The covariance between measurement error and prior

information is generally unknown and usually ignored. The

W and C matrices are therefore diagonal. Under this

assumption, the maximum likelihood of the probability

density function in Eq. (4) is found when the cost function

C is minimal. C is the sum of the RMSE computed both on

the radiometric measurements and on the canopy variables

prior information:

C ¼
Xnmeas

i¼1

Ri � Ri
sim

ei

� 	2

þ
Xnvar
j¼1

Vj � V
j
prior

eiV

 !2

ð5Þ

Table 3

Transformation used to generate the distribution of the variables using

uniform laws applied on the transformed variables

Variables Minimum Maximum Transformed

variables

LAI 0 8 e�LAI/2

hl 20 75 cos (hl)
h 0.05 1.00 e�3h

Cab 20 100 e�Cab/100

Cw 0.005 0.025 e�50Cw

N 1.0 2.5 N

S 0.5 1.5 S
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Fig. 1. Distribution of the vegetation variables estimated with the LUT for Experiment 7 (see Table 1). LAI=1.64 and Cab=50 Ag cm�2 and for the dry soil

(S=1.4). Results obtained on the 3Dbb case. (a) Represents the results with the whole LUT. (b) Represents the results when some entries have been selected in

the LUT according to prior information. The vertical solid line corresponds to the actual value of the variables, and the dotted line represents the median of the

distributions.
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where eV
i is the uncertainty associated to the prior informa-

tion Vprior
j (Eq. (5)). Assessing eV

i is quite difficult, because

it would require to assess the prior statistics of canopy

variables V in the Bayesian sense. It is preferable to estimate

the ratio ~ of the information provided by the reflectance

versus the canopy variables prior information. Under the

assumption that measurement errors are proportional to the

reflectance, the cost function is written as:

C ¼
Xnmeas

i¼1

Ri � Ri
sim

Ri

� 	2

þ
Xnvar
j¼1

aj
Vj � V

j
prior

Vj
sup � V

j
inf

 !2

ð6Þ

The coefficients a and the prior variables values Vprior are

given in Table 4. Vinf
j

and Vsup
j are the lower and upper

bounds for the parameter Vj, respectively. Fig. 2 shows that

if the canopy variables are retrieved only with radiometric

information term in the cost function (i.e. a=0), their

estimation is inaccurate. This is a direct consequence of

the fact that the inverse problem is ill posed. To overcome

this problem, some prior information (the prior estimations

Vprior and the coefficients a) are required. We will see in

Section 3 how they were derived.

Table 4

Coefficient a and prior parameter values Vprior for the QNT algorithm

Parameter a Prior value

LAI .25 2

hl 1 60j
h 1 0.15

Cab .25 60

Cw 1 0.015

N 1 1.5

S .25 1

Fig. 2. Canopy variables retrieved with the QNT without constraint. Continuous line: retrieved value, dot: initial value (derived from the mini LUT), circles:

actual variable value.
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The QNT is widely used and allows to converge toward

the minimum of the cost function very efficiently. It requires

an initial value for the parameters V to estimates and

iteratively minimizes the cost function. The initial values

of the variables V are derived from a mini LUT (same as

LUT, but with only 3000 cases). Hereafter, the term

LUTQNT stands for this mini LUT. Results (not shown)

indicate that QNT is not too sensitive to the initial values of

the initial guess derived from LUTQNT.

2.3.3. Back-propagation neural network

NNTs are broadly used in remote sensing, from classi-

fication applications to inverse problem resolution(Baret,

Clevers, & Steven, 1995; Buelgasim, Gopal, & Strahler,

1998; Smith, 1993). NNTs can be defined as universal tools

for surface response approximation (Hornik, 1989, 1991;

Leshno, Ya Lin, Pinkus, & Shocken, 1993). They enable to

relate a given set of input variables to a set of output

variables, irrespective to any known functional relationship

between input and output, provided an implicit relationship

exists between these sets. This approach is fundamentally

different from LUT and QNT that require the model M (a

functional relation between variables and BRF) to compute

some cost function C (Eq. (6)).

Although no rigorous mathematical demonstration was

provided in the literature, this approach can be understood

as building the relation that transforms the BRFs measured

for several wavelengths (input values) into the canopy

variable values Vi (output value) (Eq. (7)):

G : fR1; . . . ;Rnmeas
giVi ð7Þ

The most interesting point is that the NNT enables to

account for the error terms e (Eq. (1)).

A one-layer NNT that simulates the vegetation parameter

Vi as a function of the BRFs can be written under the form:,1

f WNNT
i 


Rk1

]

Rknmeas

2
66664

3
77775þ bNNT

i

0
BBBB@

1
CCCCA ¼ Vi ð8Þ

where Rk is the BRFs measured at the wavelength k, WNNT

is the matrix of ‘‘synaptic’’ weight, and bNNT is the bias

added to the neurons (Demuth & Beale, 1998). The network

is composed of nl layers of neurons. The matrix WNNT has

the dimension nl
nmeas, and b is a vector of dimension nl.

The input (BRF) and output (V) values are scaled so that

they fall in the range [�1,1] and their mean and standard

deviation are normalized. For example, the normalized BRF

are computed according to BRFnorm=(BRF�mean(BRF))/

standard deviation (BRF). The neurons are arranged so that

they transform the input signal (the BRFs) into the output

signal (corresponding values for a set of canopy variables).

The connections between neurons are associated to a ‘‘syn-

aptic’’ weight. Each neuron transforms the sum of the

weighed signal from the previous neurons according to a

given transfer function and a bias. In this study, the transfer

functions were tangent-sigmoid and linear functions. The

combination of which is recognized as capable of fitting any

type of function (Demuth & Beale, 1998).

Before using NNT to retrieve the canopy variables, the

network has to be trained. A training set of nmeas BRFs and

the corresponding canopy variable values is used for this

purpose. The Lavenberg–Marquardt optimization algorithm

is implemented to search for the synaptic weights and

neuron bias that allow the best fit with the set of canopy

variables corresponding to the input BRFs in the training

data set. The initial values of the weights and biases were set

to a random value between �1.0 and +1.0.

The NNT is trained with examples extracted from the

previous LUT. To improved the simulation of LAI and Cab,

Criterion (3) was applied to the training data set that finally

contains 8032 examples. This prior information enables to

estimate more accurately Cab. As a matter of fact, inter-

mediate results show that if no prior selection was intro-

duced in the training database, the NNT was not able to

correctly retrieve Cab. For fAPAR and fCover, only 1000

examples, unrelated to any prior information, have been

used to train the NNT. Using more examples does not

improve the accuracy of the canopy variables estimation.

A 2.5% noise was added to the examples extracted from

the LUT. This is a way to introduce prior information on

uncertainties in the system. However, even for test data sets

associated with little uncertainties, the addition of noise

provides more robustness to the NNT.

The architecture of the NNT was empirically defined.

Table 5 gives the architecture of the NNT as a function of

the canopy variables to retrieved. The networks are here

defined and trained independently for each canopy variable.

Previous tests demonstrated that the concurrent estimation

of several canopy variables with a single network was

leading to poorer performances. These network architectures

have been defined after a series of preliminary tests.

1 To extent Eq. (8) to a multilayer NTT, see Demuth and Beale (1998).

Table 5

Architecture of the NNTs in function of the parameters to retrieve

Parameter Number of

neurones

per layer

Transfer

function

Size of the

learning

database

LAI or Cab 6 tan-sigmoid 8032

5 tan-sigmoid

3 tan-sigmoid

1 linear

LAI.Cab, fAPAR,

or fCover

4 tan-sigmoid 1000

1 linear

B. Combal et al. / Remote Sensing of Environment 84 (2002) 1–15 7



Ten networks have been independently trained to

retrieved a canopy variable, each corresponding to inde-

pendent random drawing of sets of initial values of the

synaptic weights and bias (Fig. 3). The median of the 10

parallel network outputs was considered as solution of the

inverse problem.

Fig. 3. Distribution of the canopy variables retrieved with the NNT for Experiment 7 (see Table 1). Vertical solid line: actual values, Dashed line: median of the

distribution. (a) 1Dbs, (b) 3Dbb.
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Fig. 4. Canopy variables retrieved with the LUT with prior information for the synthetic data 1Dbs (a) and 3Dbb (b). Continuous line: retrieved value, circles:

actual variable value.
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3. Solution of the ill-posed inverse problem

The relative RMSE (RRMSE) of the estimated canopy

variables V̂i was used to compare the performances of the

algorithms

RRMSEðViÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nexp

X
nexp

V̂i � Vi
true

Vi
sup � Vi

inf

 !2
vuut ð9Þ

where Vtrue
i is the actual value of the canopy variable Vi.

The squared relative difference is summed for each of the

nexp=18 experiments described in Table 1.

Results will be first inspected using the LUT algorithm,

considering the effect of model and measurement uncertain-

ties. Then, the performances of the two other algorithms will

be compared. Finally, computer requirements associated to

each algorithm are discussed.

3.1. Detailed results using LUT algorithm: effect of

measurement and model uncertainties

The LUT enables to retrieved LAI with a relative error

around 0.07 over 1Dbs and 1Dbb, i.e. when no model

uncertainty is considered because the 1D SAIL model used

in the inverse process was also used to generate the test data

sets. RRMSE dramatically increases to 0.2 when model

uncertainty is considered (3Dbs and 3Dbb). Fig. 4b shows

that the error on LAI comes mainly from large LAI values

that are poorly estimated because of the lack of sensitivity

(saturation). For the 1D cases, large LAI values are slightly

overestimated (Fig. 4a), while they are underestimated over

3D cases (Fig. 4b). This confirms the observation of

Combal, Oshchepkov, Sinyuk, and Isaka (2000), showing

that only little information on canopy architecture is avail-

able for LAI larger than 3.

Cab is retrieved with a RRMSEc0.20 for the 1D cases.

RRMSE dramatically increases for the 3D cases

(RRMSE>0.35). Fig. 4a shows that situations where LAI

and leaf Cab values are low and soil reflectance is high

(Experiments 1 and 5, see Table 1), Cab is overestimated.

For these situations, the uncertainty about Cab is particularly

important because the contribution of the leaf reflectance is

too weak as compared to the soil contribution.

The uncertainty on estimates of LAI.Cab increases from

RRMSEc0.04 for the 1D cases to RRMSEc0.10 for the

3D cases. Fig. 4b shows that for large LAI (Experiments 4,

10, 14, and 18), the retrieved LAI.Cab value is overesti-

mated for the 1D cases and underestimated for the 3D cases.

This behavior is consistent with the previous observations

on LAI.

fAPAR is retrieved accurately for the 1D cases (RRMSE

c0.035). For the 3D cases, fAPAR is underestimated (Fig.

4b), and the RRMSE increases up to 0.11, which is still

acceptable.

Among all the variables, fCover is the most sensitive to

modeling errors. Its RRMSE depends on the model/measure-

ment adequacy: the uncertainty increases from RRMSE

Fig. 5. RRMSE (Eq. (9)) of the LAI, Cab, LAI.Cab, fAPAR, and fCover retrieved with the LUT, the QNT, and the NNT as a function of the data sets.
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c0.02 (1Dbs) to RRMSEc0.15 (3Dbb), i.e. is multiplied by

7 when modeling errors are considered. The uncertainty

increases dramatically for the 3D cases where SAIL does

not represent properly the structure of the maize crop, as seen

earlier. In consequence, fCover is slightly underestimated

(Fig. 4b). However, the uncertainty of fCover for the 3D cases

is slightly higher than that of fAPAR but significantly lower

that on LAI Cab and LAI.Cab (Fig. 5).

For the cases where modeling errors are important (3Dbs

and 3Dbb), the error on the retrieved variables increases

significantly. This indicates that the consistency between the

reflectance model and the actual canopy structure has

significant consequences on the accuracy of the retrieved

variables.

The leaf angle variable hl, the hot spot parameter h, and

the leaf structure parameter N are retrieved accurately,

thanks to the preselection operated on the LUT (Eq. (3)).

The Cw parameters cannot be accurately retrieved because it

would require some additional infrared measurements,

although it was coupled here to the Cdm that absorbs slightly

over the whole spectral domain.

3.2. Comparison with QNT and NNT algorithms

For Cab, fAPAR, and fCover, the uncertainty is almost

equal to that of LUT. For LAI and LAI.Cab, QNT uncer-

tainty is slightly larger than the LUT uncertainty for the 1D

cases (Fig. 5). LAI, LAI.Cab, and fAPAR are overestimated

for the 1D cases and underestimated for 3D cases, when

LAI is optically thick (LAI>3). This is again consistent with

LUT observations.

For the 1D cases, NNT is less accurate than both the LUT

and the QNT. This difference is due to the fact than NNT

approximates the surface response defined by the learning

database. The approximation leads to significant errors as

compared to the two other algorithms. However, we observe

that for Cab and LAI.Cab estimation, NNT performs sim-

ilarly to the LUT.

For the 3D cases and particularly for Cab, NNT is more

accurate than LUT and QNT (Fig. 5). Detailed inspection of

the results shows (Figs. 4b, 6b, and 7b) that some combi-

nation of variables make LUT and QNT unstable. For

example, Cab is largely overestimated for cases where LAI

and Cab have small values. In the same case (Fig. 7b),

overestimation is less important with NNT.

The main advantage of the NNT on LUT and QNT is that

it can be trained to retrieve only on one variable independ-

ently from the others. Another aspect is that training NNT to

retrieve LAI.Cab seems to be slightly more accurate than

retrieving separately LAI and Cab and multiplying the

results. For 1D cases, RRMSE corresponding to multiplying

LAI by Cab is about 0.08, while RRMSE of direct estimate

of LAI.Cab is about 0.04.

We observe on all the cases that the effect of the bias is

not very significant. This needs further investigation to

understand this surprisingly small effect.

3.3. Computer resources

When applying these techniques to a large number of

pixels in operational applications, computer resources may

be a limiting factor. This is the reason why this issue is

presented, although very little effort was dedicated to the

optimization of the code used. All the computation was

completed with a Sun/Solaris Ultrasparc 340 MHz/256 Mo

workstation using Matlab software. In this section, we only

focused on the application step, the learning step for LUT

(generation of the LUT), and NNT (calibration of the

synaptic weights and biases) being considered as not limit-

ing because it is done once.

The LUT is the fastest of the three algorithms (c1.5 106

operations s�1) (Table 6) although it requires a large amount

of operations because it consists in sorting a matrix. The

most important point is that the computation time does not

depend on the radiative transfer model used. It is computer

memory and disk storage consuming. In this implementa-

tion, the full-size LUT was 28.23 MB.

When prior information is considered, the size of the

LUT reduces to 8032 elements (0.81 MB) and is 35 times

smaller than the full-size table. The times spent to sort this

table is about 65 times shorter. For operational treatments, if

prior information is known as a function of species, LUT

would be both a fast and an economic approach to estimate

vegetation properties.

The QNT does not require a large amount of memory.

However, the time spent to find the solution is larger than

the two other algorithms (Table 6). Further, it depends

strongly on the radiative transfer model used because it is

run at each iteration.

We observe that for the 1D case, a larger number of

iterations than those of the 3D cases is required because the

convergence is slower due to the ‘‘smoother’’ and ‘‘flatten’’

character of the error surface.

The NNT, although not the faster algorithm, requires the

smaller number of operation to estimate canopy variables.

Once the training step is achieved, only the weights are

stored in files, which size is negligible. The simulation of

the variables is instantaneous.

The time spent on training the NNT depends directly on

its complexity. To retrieve LAI or Cab, a three-layer network

has been used, with six, five, and three neurons on each

layers. For fAPAR and fCover, only a one-layer network

with four neurons was required. In consequence, the time

spend to train NNT to retrieve fAPAR or fCover is signifi-

cantly smaller than for LAI or Cab. However, the training

step may require a long time for two reasons. Firstly, many

trials are required to choose the most adequate network

architecture. Secondly, each time a network has been

trained, its simulations are validated against another set of

examples (supervised mode). If the results are not accurate

enough, the network is reinitialized, and the training

sequence restarts. Consequently, the time spent on learning

may be highly variable.
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Fig. 6. Canopy variables retrieved with the QNT for the synthetic data 1Dbs (a) and 3Dbb (b). Continuous line: retrieved values, circles: actual value.

B. Combal et al. / Remote Sensing of Environment 84 (2002) 1–1512



Fig. 7. Canopy variables retrieved with the NNT. (a) 1Dbs, (b) 3Dbb. Continuous line: retrieved values, circles: actual values.
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Conversely, the time spent to estimate the variables does

not vary significantly with the complexity of the network. For

estimation, the time required by NNT is comparable to the

time required to treat LUT with prior information (Table 6).

4. Conclusion

Because of model and measurement uncertainties, radio-

metric information is not sufficient enough to estimate

accurately the vegetation variables: some prior information

is needed. Three different approaches, each one adapted to

one of the three algorithms tested (LUT, QNT, and NNT),

have been implemented to exploit concurrently radiometric

information and prior information.

For LUT and NNT, the prior information on the distri-

bution of the variables is represented by a selection of

combination of vegetation variables among all the possible

combinations. The uncertainties on measurements (and

presumably models) could be introduced in the NNT by

addition of noise to the learning data set. For QNT, the cost

function is transformed to account for an estimate of the

values of the variables and a coefficient that stands for the

balance between radiometric information and prior informa-

tion.

We should note that the way we included prior informa-

tion into each algorithm is not unique and effort should be

directed toward the evaluation of alternatives.

Besides the necessity of including prior information to

overcome the limitation of the radiometric information, the

present study emphasizes the role played by inconsistencies

between model and measurements.

Four sets of simulated data, with a range of model and

measurement uncertainties, have been used to evaluate the

accuracy of the algorithms for a range of canopy variables.

LUT and QNT are very sensitive to the modeling errors.

The accuracy of these algorithms depends directly on the

model accuracy and on the prior information introduced.

Although NNT performs poorer when only measurement

uncertainties are considered, this algorithm overpasses

LUT and QNT when model uncertainties are taken into

account.

The present work has shown the necessity to improved

the knowledge on the uncertainties related to measurements

and model and its structure (dependency on wavelength,

looking direction, and vegetation characteristics). To

achieve this task, some efforts should be directed to the

collection of data to analyze the uncertainties related to the

elements involved in the radiative transfer (vegetation, soil,

atmosphere, etc.) and to estimate their propagation along the

remote sensing chain (sensor, digitizing, georeferencing,

successive corrections, etc.). Such a description of uncer-

tainties is required to improve the performance of the

algorithms. The other important issue is to improve our

knowledge on prior information about the distribution of the

canopy variables used in the radiative transfer models. This

could be achieved through specific experiments.

Because gathering these data will represent significant

efforts that could be exploited on a range of sensors, it is

necessary to define a strategy that allows a synergistic

contribution and use of these experiments. The results of

this preliminary and theoretical study are necessarily

limited. This model inversion approach will be evaluated

in the next study over actual data.

Actual measurements are required to introduce model/

measurement inadequacies and realistic noise that depend

on species. Validating algorithms against actual data sets

will make possible to better define the balance between

radiometric and prior information.
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